River state classification combining patch-based processing and CNN
نویسندگان
چکیده
منابع مشابه
Cystoscopic Image Classification Based on Combining MLP and GA
In the past three decades, the use of smart methods in medical diagnostic systems has attracted the attention of many researchers. However, no smart activity has been provided in the field of medical image processing for diagnosis of bladder cancer through cystoscopy images despite the high prevalence in the world. In this paper, a multilayer neural network was applied to clas...
متن کاملPatch-Based Mathematical Morphology for Image Processing, Segmentation and Classification
In this paper, a new formulation of patch-based adaptive mathematical morphology is addressed. In contrast to classical approaches, the shape of structuring elements is not modified but adaptivity is directly integrated into the definition of a patch-based complete lattice. The manifold of patches is learned with a nonlinear bijective mapping, interpreted in the form of a learned rank transform...
متن کاملCNN based music emotion classification
Music emotion recognition (MER) is usually regarded as a multi-label tagging task, and each segment of music can inspire specific emotion tags. Most researchers extract acoustic features from music and explore the relations between these features and their corresponding emotion tags. Considering the inconsistency of emotions inspired by the same music segment for human beings, seeking for the k...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملTime multiplexed color image processing based on a CNN with cell-state outputs
A practical system approach for time-multiplexing cellular neural network (CNN) implementations suitable for processing large and complex images using small CNN arrays is presented. For real size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware cells and all the pixels in the image involved. This paper presents a practical solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2020
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0243073